Fungi and Lichen

Fungi

Summary 5

A fungus (/ˈfʌŋɡəs/; plural: fungi or funguses) is a member of a large group of eukaryotic organisms that includes microorganisms such as yeasts and molds (British English: moulds), as well as the more familiar mushrooms. These organisms are classified as a kingdom, Fungi, which is separate from plants, animals, protists and bacteria. One major difference is that fungal cells have cell walls that contain chitin, unlike the cell walls of plants and some protists, which contain...

As pathogens and parasites 6

Many fungi are parasites on plants, animals (including humans), and other fungi. Serious pathogens of many cultivated plants causing extensive damage and losses to agriculture and forestry include the rice blast fungus Magnaporthe oryzae, tree pathogens such as Ophiostoma ulmi and Ophiostoma novo-ulmi causing Dutch elm disease, and Cryphonectria parasitica responsible for chestnut blight, and plant pathogens in the genera Fusarium, Ustilago, Alternaria, and Cochliobolus. Some carnivorous fungi, like Paecilomyces lilacinus, are predators of nematodes, which they capture using an array of specialized structures such as constricting rings or adhesive nets.

Some fungi can cause serious diseases in humans, several of which may be fatal if untreated. These include aspergilloses, candidoses, coccidioidomycosis, cryptococcosis, histoplasmosis, mycetomas, and paracoccidioidomycosis. Furthermore, persons with immuno-deficiencies are particularly susceptible to disease by genera such as Aspergillus, Candida, Cryptoccocus,Histoplasma, and Pneumocystis. Other fungi can attack eyes, nails, hair, and especially skin, the so-called dermatophytic and keratinophilic fungi, and cause local infections such as ringworm and athlete's foot. Fungal spores are also a cause of allergies, and fungi from different taxonomic groups can evoke allergic reactions.

Bioremediation 6

Certain fungi, in particular "white rot" fungi, can degrade insecticides, herbicides, pentachlorophenol, creosote, coal tars, and heavy fuels and turn them into carbon dioxide, water, and basic elements. Fungi have been shown to biomineralizeuraniumoxides, suggesting they may have application in the bioremediation of radioactively polluted sites.

Ecology 6

Although often inconspicuous, fungi occur in every environment on Earth and play very important roles in most ecosystems. Along with bacteria, fungi are the major decomposers in most terrestrial (and some aquatic) ecosystems, and therefore play a critical role in biogeochemical cycles and in many food webs. As decomposers, they play an essential role in nutrient cycling, especially as saprotrophs and symbionts, degrading organic matter to inorganic molecules, which can then re-enter anabolic metabolic pathways in plants or other organisms.

Many fungi have important symbiotic relationships with organisms from most if not all Kingdoms. These interactions can be mutualistic or antagonistic in nature, or in the case of commensal fungi are of no apparent benefit or detriment to the host.

Mycorrhizal symbiosis between plants and fungi is one of the most well-known plant–fungus associations and is of significant importance for plant growth and persistence in many ecosystems; over 90% of all plant species engage in mycorrhizal relationships with fungi and are dependent upon this relationship for survival.

The mycorrhizal symbiosis is ancient, dating to at least 400 million years ago. It often increases the plant's uptake of inorganic compounds, such as nitrate and phosphate from soils having low concentrations of these key plant nutrients. The fungal partners may also mediate plant-to-plant transfer of carbohydrates and other nutrients. Such mycorrhizal communities are called "common mycorrhizal networks". A special case of mycorrhiza is myco-heterotrophy, whereby the plant parasitizes the fungus, obtaining all of its nutrients from its fungal symbiont. Some fungal species inhabit the tissues inside roots, stems, and leaves, in which case they are called endophytes. Similar to mycorrhiza, endophytic colonization by fungi may benefit both symbionts; for example, endophytes of grasses impart to their host increased resistance to herbivores and other environmental stresses and receive food and shelter from the plant in return.

Lichens are formed by a symbiotic relationship between algae or cyanobacteria (referred to in lichen terminology as "photobionts") and fungi (mostly various species of ascomycetes and a few basidiomycetes), in which individual photobiont cells are embedded in a tissue formed by the fungus. Lichens occur in every ecosystem on all continents, play a key role in soil formation and the initiation of biological succession, and are the dominating life forms in extreme environments, including polar, alpine, and semiarid desert regions. They are able to grow on inhospitable surfaces, including bare soil, rocks, tree bark, wood, shells, barnacles and leaves. As in mycorrhizas, the photobiont provides sugars and other carbohydrates via photosynthesis, while the fungus provides minerals and water. The functions of both symbiotic organisms are so closely intertwined that they function almost as a single organism; in most cases the resulting organism differs greatly from the individual components. Lichenization is a common mode of nutrition; around 20% of fungi—between 17,500 and 20,000 described species—are lichenized. Characteristics common to most lichens include obtaining organic carbon by photosynthesis, slow growth, small size, long life, long-lasting (seasonal) vegetative reproductive structures, mineral nutrition obtained largely from airborne sources, and greater tolerance of desiccation than most other photosynthetic organisms in the same habitat.

Many insects also engage in mutualistic relationships with fungi. Several groups of ants cultivate fungi in the order Agaricales as their primary food source, while ambrosia beetles cultivate various species of fungi in the bark of trees that they infest. Likewise, females of several wood wasp species (genus Sirex) inject their eggs together with spores of the wood-rotting fungus Amylostereum areolatum into the sapwood of pine trees; the growth of the fungus provides ideal nutritional conditions for the development of the wasp larvae.Termites on the African savannah are also known to cultivate fungi, and yeasts of the genera Candida and Lachancea inhabit the gut of a wide range of insects, including neuropterans, beetles, and cockroaches; it is not known whether these fungi benefit their hosts. The larvae of many families of fungicolous flies, particularly those within the superfamily Sciaroidea such as the Mycetophilidae and some Keroplatidae feed on fungal fruiting bodies and sterile mycorrhizae.

Many fungi are parasites on plants, animals (including humans), and other fungi. Serious pathogens of many cultivated plants causing extensive damage and losses to agriculture and forestry include the rice blast fungus Magnaporthe oryzae, tree pathogens such as Ophiostoma ulmi and Ophiostoma novo-ulmi causing Dutch elm disease, and Cryphonectria parasitica responsible for chestnut blight, and plant pathogens in the genera Fusarium, Ustilago, Alternaria, and Cochliobolus. Some carnivorous fungi, like Paecilomyces lilacinus, are predators of nematodes, which they capture using an array of specialized structures such as constricting rings or adhesive nets.

Some fungi can cause serious diseases in humans, several of which may be fatal if untreated. These include aspergilloses, candidoses, coccidioidomycosis, cryptococcosis, histoplasmosis, mycetomas, and paracoccidioidomycosis. Furthermore, persons with immuno-deficiencies are particularly susceptible to disease by genera such as Aspergillus, Candida, Cryptoccocus,Histoplasma, and Pneumocystis. Other fungi can attack eyes, nails, hair, and especially skin, the so-called dermatophytic and keratinophilic fungi, and cause local infections such as ringworm and athlete's foot. Fungal spores are also a cause of allergies, and fungi from different taxonomic groups can evoke allergic reactions.

Growth and physiology 6

The growth of fungi as hyphae on or in solid substrates or as single cells in aquatic environments is adapted for the efficient extraction of nutrients, because these growth forms have high surface area to volume ratios. Hyphae are specifically adapted for growth on solid surfaces, and to invade substrates and tissues. They can exert large penetrative mechanical forces; for example, the plant pathogenMagnaporthe grisea forms a structure called an appressorium that evolved to puncture plant tissues. The pressure generated by the appressorium, directed against the plant epidermis, can exceed 8 megapascals (1,200 psi). The filamentous fungus Paecilomyces lilacinus uses a similar structure to penetrate the eggs of nematodes.

The mechanical pressure exerted by the appressorium is generated from physiological processes that increase intracellular turgor by producing osmolytes such as glycerol. Morphological adaptations such as these are complemented by hydrolytic enzymes secreted into the environment to digest large organic molecules—such as polysaccharides, proteins, lipids, and other organic substrates—into smaller molecules that may then be absorbed as nutrients. The vast majority of filamentous fungi grow in a polar fashion—i.e., by extension into one direction—by elongation at the tip (apex) of the hypha. Alternative forms of fungal growth include intercalary extension (i.e., by longitudinal expansion of hyphal compartments that are below the apex) as in the case of some endophytic fungi, or growth by volume expansion during the development of mushroom stipes and other large organs. Growth of fungi as multicellular structures consisting of somatic and reproductive cells—a feature independently evolved in animals and plants—has several functions, including the development of fruiting bodies for dissemination of sexual spores (see above) and biofilms for substrate colonization and intercellular communication.

The fungi are traditionally considered heterotrophs, organisms that rely solely on carbon fixed by other organisms for metabolism. Fungi have evolved a high degree of metabolic versatility that allows them to use a diverse range of organic substrates for growth, including simple compounds such as nitrate, ammonia, acetate, or ethanol. For some species it has been shown that the pigment melanin may play a role in extracting energy from ionizing radiation, such as gamma radiation; however, this form of "radiotrophic" growth has been described for only a few species, the effects on growth rates are small, and the underlying biophysical and biochemical processes are not known. The authors speculate that this process might bear similarity to CO2 fixation via visible light, but instead utilizing ionizing radiation as a source of energy.

Fuentes y créditos

  1. (c) Dave McLear, algunos derechos reservados (CC BY), http://www.flickr.com/photos/dmclear/5043472711/
  2. (c) Dave McLear, algunos derechos reservados (CC BY), http://www.flickr.com/photos/dmclear/5044097384/
  3. (c) Purple Wyrm, algunos derechos reservados (CC BY-NC-SA), http://www.flickr.com/photos/wyrmworld/2910535947/
  4. (c) Gabby Padilla, todos los derechos reservados, subido por Gabby Padilla
  5. Adaptado por Gabby Padilla del trabajo de (c) Wikipedia, algunos derechos reservados (CC BY-SA), http://en.wikipedia.org/wiki/Fungi
  6. (c) Wikipedia, algunos derechos reservados (CC BY-SA), http://en.wikipedia.org/wiki/Fungus

Más información

NaturaLista Mapa

Color varies
Size small
Shape varies
Type mushroom/lichen